Skip to content

\(\sqrt{2}\) is irrational

\(\boxed{\text{Theorem A. } \sqrt{2} \notin \mathbb{Q}}\)

\(\text{Proof. }\)

\(\vdash \neg A\)

\[ \begin{align} \neg (\sqrt{2} &\notin \mathbb{Q})\\ \sqrt{2} &\in \mathbb{Q} \end{align} \]

\(\text{Definition B. } \mathbb{Q} := \{\frac{a}{b} \mid b \not= 0 \land \gcd(a, b) = 1\}\)

\((m, n) := (a, b) \in \mathbb{Z}^2: b \not= 0 \land \gcd(a, b) = 1 \land \sqrt{2} = \frac{a}{b}\)

\[ \begin{align}\\ \sqrt{2} &= \frac{m}{n}\\ (\sqrt{2})^2 &= (\frac{m}{n})^2\\ 2 &= \frac{m^2}{n^2}\\ 2n^2 &= m^2 \end{align} \]

\(\text{Lemma C. } \forall a \in \mathbb{Z}: a^2 \equiv a \pmod 2\)

\[ \begin{align} m^2 &\equiv m \pmod 2 \end{align} \]

\(\text{Lemma D. } \forall a, b, c \in \mathbb{Z}: a \equiv b \pmod c \iff \exists d \in \mathbb{Z}(a = cd + b)\)

\[ \begin{align} 2n^2 &= m^2\\ m^2 &\equiv 0 \pmod 2 \end{align} \]

\(m^2 \equiv m \pmod 2 \land m^2 \equiv 0 \pmod 2 \implies m \equiv 0 \pmod 2\)

\[ \begin{align} \exists a \in \mathbb{Z}: m &= 2a \end{align} \]

\(k := a \in \mathbb{Z}: m = 2a\)

\[ \begin{align} 2n^2 &= m^2\\ 2n^2 &= (2k)^2\\ 2n^2 &= 4k^2\\ n^2 &= 2k^2\\ n^2 &\equiv 0 \pmod 2 \end{align} \]

\(n^2 \equiv 0 \pmod 2 \land n^2 \equiv n \pmod 2 \implies n \equiv 0 \pmod 2\)

\[ \begin{align} \exists a \in \mathbb{Z}: n &= 2a \end{align} \]

\(l := a \in \mathbb{Z}: n = 2a\)

\(\text{Lemma E. } \forall a, b, c \in \mathbb{Z}: c \mid a \land c \mid b \implies \gcd(a, b) \ge |c|\)

\(m = 2k \land n = 2l \implies 2 \mid m \land 2 \mid n \implies \gcd(m, n) \ge 2 \text{ ↯}\)

\(\therefore \sqrt{2} \notin \mathbb{Q} \text{ } \square\)