\(\sqrt{2}\) is irrational
\(\boxed{\text{Theorem A. } \sqrt{2} \notin \mathbb{Q}}\)
\(\text{Proof. }\)
\(\vdash \neg A\)
\(\text{Definition B. } \mathbb{Q} := \{\frac{a}{b} \mid b \not= 0 \land \gcd(a, b) = 1\}\)
\((m, n) := (a, b) \in \mathbb{Z}^2: b \not= 0 \land \gcd(a, b) = 1 \land \sqrt{2} = \frac{a}{b}\)
\(\text{Lemma C. } \forall a \in \mathbb{Z}: a^2 \equiv a \pmod 2\)
\(\text{Lemma D. } \forall a, b, c \in \mathbb{Z}: a \equiv b \pmod c \iff \exists d \in \mathbb{Z}(a = cd + b)\)
\(m^2 \equiv m \pmod 2 \land m^2 \equiv 0 \pmod 2 \implies m \equiv 0 \pmod 2\)
\(k := a \in \mathbb{Z}: m = 2a\)
\(n^2 \equiv 0 \pmod 2 \land n^2 \equiv n \pmod 2 \implies n \equiv 0 \pmod 2\)
\(l := a \in \mathbb{Z}: n = 2a\)
\(\text{Lemma E. } \forall a, b, c \in \mathbb{Z}: c \mid a \land c \mid b \implies \gcd(a, b) \ge |c|\)
\(m = 2k \land n = 2l \implies 2 \mid m \land 2 \mid n \implies \gcd(m, n) \ge 2 \text{ ↯}\)
\(\therefore \sqrt{2} \notin \mathbb{Q} \text{ } \square\)